If f is concave, then these conditions are also sufficient:

PROPOSITION C.7 Suppose $f \in C^1$ is a concave function and X is a convex set. Then if a point \mathbf{x}^* satisfies

$$\nabla \mathbf{f}(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) < 0, \ \forall \mathbf{x} \in X,$$

it is a global maximum.

In the nonconvex unconstrained case, local optimality is guaranteed by the following *second-order sufficiency conditions*:

PROPOSITION C.8 If $f \in C^2$ and $X = \Re^n$, then if a point \mathbf{x}^* satisfies $(i)\nabla f(\mathbf{x}^*) = 0$ $(ii)\nabla^2 f(\mathbf{x}^*)$ is positive definite,

it is a local maximum.

There are no general sufficient conditions for global optima in the nonconvex case.

Equality and Inequality Constraints

Suppose the set X is defined by a set of linear equalities. That is, $X = \{\mathbf{x} : h(\mathbf{x}) = \mathbf{b}\}$, where $h: \mathbb{R}^n \to \mathbb{R}^m$ (i.e., $\mathbf{h}(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_m(\mathbf{x}))$) so the optimization problem to solve is

$$\begin{aligned}
\max \quad f(\mathbf{x}) \\
\text{s.t.} \quad \mathbf{h}(\mathbf{x}) &= \mathbf{b}.
\end{aligned}$$

We require the following definition:

DEFINITION C.9 A point \mathbf{x}^* satisfying $\mathbf{h}(\mathbf{x}^*) = \mathbf{b}$ is said to be a **regular point** of the constraints $\mathbf{h}(\mathbf{x}) = \mathbf{b}$ if the vectors $\nabla \mathbf{h}_1(\mathbf{x}), \dots, \nabla \mathbf{h}_m(\mathbf{x})$ are linearly independent.

The assumption of regularity of x^* is an example of what is called a *constraint qualification*, a condition that ensures that the first-order conditions correctly identify a local optimum.

We then have the following first-order necessary conditions:

PROPOSITION C.9 Suppose $f \in C^1$ and \mathbf{x}^* is a local maximum of the function f over the constraint set $X = \{x : \mathbf{h}(\mathbf{x}) = \mathbf{b}\}$. Then if \mathbf{x}^* is a regular point, there exist a vector $\boldsymbol{\pi} \in \mathbb{R}^m$ such that

$$\nabla \mathbf{f}(\mathbf{x}^*) - \boldsymbol{\pi}^\top \nabla \mathbf{h}(\mathbf{x}^*) = 0.$$

A vector $\boldsymbol{\pi}$ above is called a *Lagrange multiplier* of the constraints $\mathbf{h}(\mathbf{x}) = \mathbf{b}$. If the constraint set is defined by inequalities, so the problem is

$$\begin{array}{ll}
\max & f(\mathbf{x}) \\
\text{s.t.} & \mathbf{g}(\mathbf{x}) \leq \mathbf{d},
\end{array}$$

where $\mathbf{g}: \Re^n \to \Re^m$, then similar conditions apply. Indeed, the definition of a regular point in this case is: